Cops and Robbers
 The ICFP 2005 Programming Contest

Robby Findler \& Friends
PLT, Brown, Chicago, NEU
TTI-Chicago, URI, Utah

Programming Contests

3 day sprint hacks

One day in 2001, Jacob Matthews and I were talking about programming contests, and I was complaining how they purported to be measures of how good a programmer was, but that they were just hack-fests --I would never hire a serial contest winner. The cod such people produce is write once, read never.

So Jacob suggested a great idea: why So have two stages to a contest? The
not haver not have two stages to a contest? Th
contestants begin as usual with the contest, but then we make them modify their code and test the modified code? This would, he argued, select for people who can write maintainable code, a true programming skill.

Good programmming skills

Desiderata, i

Twist:

Beyond those goals, we had a few other ideas in mind about how we wanted the competition to go.

- Easy to get a working solution
- Hard to get a good solution
- Implementing twist gives a clear advantage

Desiderata, iii

I love board games and everyone who was interested in helping with the
contest like them too, so it was contest like them too, so it was decided early on that the contestants would implement players for some game
For games where search is impractical or infeasible for some reason, what or infeasible for some reason, what
often happens is that the best strateg often happens is that the best strateg
often depends on the strategies that often depends on the strategies that
your opponents play. In gaming circles, your opponents play. In gaming circles,
you sometimes hear this called the "meta-game".

To take an extreme example, assuming somehow no one knew ahead of time hat all three strategies in
rock-paper-scissors (ie, rock, paper, and scissors) were equally strong, and somehow people tended to gravitate towards rock -- you should definitely play paper. Some would even say that rock paper scissors truly has a vibrant meta-game. I encourage you to check out the World RPS society.
tic-tac-toe, however, has just a single viable game-time strategy -- block the opponent from getting three in a row while trying to do so yourself Tho are no real strategy decisions to be made ahead of time.

So, tic-tac-toe-like games have an uninteresting meta-game, but games like rock-paper-scissors have an intersting one. We wanted our game to be in the rock-paper-scissors category

We really didn't want the game to degenerate into who could produce the a move from the one strategy the quickest. Instead, we hoped that we could come up with a game where players would think about the rules and commit to particular strategies and, if you knew (or thought you knew) what your opponents were bringing, you could take advantage of that in you own strategy.

The game

The game

Cops and Robbers

- 6 players, one robber \& 5 cops
- Each player a separate program
- Cops must catch robber while protecting banks
- Robber must evade cops while robbing banks

Welcome to Hyde Park

Unstolen money: 56000

The gray lines and circles are the streets and intersections in Hyde Park my neighborhood (in Chicago)
The grey lines are offset from the centers of the circles to indicate directionality of the streets. Imagine you are driving on the right-hand side of the road; if you have an edge on your side the street goes in your direction and if not, it doesn't.

The blue circles \& square are the locations of the cops and the red circle is the location of the robber.

The squared cop is the main quad of th University of Chicago. The cop in the
top right is at my favorite restaurant in the neighborhood.
The yellow nodes are banks (The bottom-right one is not a bank in real bottom-right one is not a bank in real
life -- that's where TTI-Chicago is life -- tha

The blue node -- in the center; a cop is
standing on it -- is the cop
headquarters and the red node is
where the robber starts.

Initially, the cops are all at the cop headquarters and the robber is at the park, marked by the red dot
Gameplay is turn-based.

Cops move

Unstolen money: 56000

This pattern of moves repeats until the cops catch the robber, or 100 such pairs of moves occur, which ever comes first.

Sometimes the cops can skip ove
nodes, as you can see from the
top-most and bottom-most cop here.
Those cops are in cars and they have
extra edges that let them skip ahead.
But (unlike real life) cops in cars have
to follow one way streets, but the foot
cops and the robber do not.

Information

Public information: location of cops
Private robber information: location The cops each get their own partial The cops each get their own partial
information about the location of the information about the location of the
robber, in two forms. First, the robber robber, in two forms. First, the robber
periodically drops evidence on nodes it periodically drops evidence on nodes it
passes. Only the cops that pass those passes. Only the cops that pass thos nodes pick up the evidence. More
interestingly, cops that are near to the interestingly, cops that are near to the
robber can "smell" the robber. Each turn, each cop learns if it is one, two, or more steps from the robber. Once the cops learn their information, they can choose to pass that on to the other cops, or not.

Smell example

Unstolen money: $\$ 6000$

As an example, assume that the square cop is told that it can smell the robber
within two steps. within two steps.

Now it can tell that the robber is on one of the red nodes.

One of the other cops can also smell the robber at a distance two and the rest the cops cannot smell the robber.
ting together the other cop's reported 2, we can narrow down the possible locations of the robber to just two.
But, we can also take the no smell information into account. Since the
information into account. Since the
middle cannot smell the robber, the
robber is not two away from it, so we can really narrow down the space to a single location for the robber.

Smell example

As an example, assume that the square
cop is told that it can smell the robber cop is told that it can smell the robber
within two steps. within two steps.

Now it can tell that the robber is on one of the red nodes.

One of the other cops can also smell the robber at a distance two and the rest the cops cannot smell the robber

Putting together the other cop's reported 2, we can narrow down the possible locations of the robber to just two.
But, we can also take the no smell information into account. Since the middle cannot smell the robber, the
robber is not two away from it, so we can really narrow down the space to a single location for the robber.

Smell example

As an example, assume that the square
cop is told that it can smell the robber cop is told that it can smell the robber
within two steps. within two steps.

Now it can tell that the robber is on one of the red nodes.

One of the other cops can also smell the robber at a distance two and the rest the cops cannot smell the robber.

Putting together the other cop's reported 2, we can narrow down the possible locations of the robber to just two.
But, we can also take the no smell information into account. Since the middle cannot smell the robber, the
robber is not two away from it, so we can really narrow down the space to a single location for the robber.

Smell example

As an example, assume that the square cop is told that it can smell the robber
within two steps. within two steps.
Now it can tell that the robber is on one of the red nodes.

One of the other cops can also smell the robber at a distance two and the rest of the cops cannot smell the robber

Putting together the other cop's reported 2, we can narrow down the possible locations of the robber to just two.
But, we can also take the no smell information into account. Since the middle cannot smell the robber, the robber is not two away from it, so we can really narrow down the space to a single location for the robber.

Smell example

As an example, assume that the square cop is told that it can smell the robber within two steps.
Now it can tell that the robber is on one of the red nodes.

One of the other cops can also smell the robber at a distance two and the rest of the cops cannot smell the robber.

Putting together the other cop's reported 2, we can narrow down the possible locations of the robber to just two.
But, we can also take the no smell information into account. Since the middle cannot smell the robber, the robber is not two away from it, so we can really narrow down the space to a single location for the robber.

Smell example

As an example, assume that the square cop is told that it can smell the robber
within two steps. within two steps.
Now it can tell that the robber is on one of the red nodes.

One of the other cops can also smell the robber at a distance two and the rest of the cops cannot smell the robber.

Putting together the other cop's reported 2, we can narrow down the possible locations of the robber to just two.
But, we can also take the no smell information into account. Since the information into account. Since the
middle cannot smell the robber, the robber is not two away from it, so we can really narrow down the space to a single location for the robber.

Cops turn, detail

Cops turn has several phases

- Cops learn their private information, and choose what to share
- Cops learn what other cops shared and formulate group plans
- Cops learn others plans and vote on plans
- Cops learn who won the vote and move

Scoring

If the cops catch the robber

- Cops split money in banks, 0-6000 pts
- Robber gets nothing
- Cops get three 60 pt bonuses

If the robber evades the cops

- Cops get two 60 pt bonuses
- Robber gets money stolen from banks

Cop goal: be selfless, but not too selfless

Tournament, i

Pods

- Each group of six plays six times, once each as robber

Judge cop config 1

Unstolen money: $\$ 5000$

Judge cop config 1

Unstolen money: $\$ 4166$

Judge cop config 2

Tournament, ii

Regular season

- Play against judges cop \& robber

Once we'd eliminated all of the entries that could not beat that cop and robber, we thought we would run a
single-elimination tournament but the single-elimination tournament but th
tournament ended up being far too sensitive to the pod groupings (and to the random number seed, apparently).

Playoffs

- Original plan: single elimination tournament
- Revised plan: random pod selection, wait for quiescence

Programming task

Implement a cop \& a robber

- Communicate via stdin/stdout
- Follow spec protocol

```
wor\
ev\
wor: 198
rbd: 5434
bv\
bv: 53-and-the-other-lake-park }9
bv: 53-and-woodlawn 96
bv: 55-and-harper 93
bv: 57-and-kimbark 92
bv: 58-culdesac 96
bv: 60-and-blackstone 95
bv/
ev/
smell: 0
pl\
pl: McGruff2 55-and-woodlawn cop-car
pl: McGruff3 55-and-woodlawn cop-car
pl: McGruff4 55-and-woodlawn cop-foot
pl: McGruff5 55-and-woodlawn cop-foot
pl: NoOpCop 55-and-woodlawn cop-car
pl/
wor/
```


Programming task

These state machines show the order in which messages are sent and received for the two bots. They just show the main loop (there are also initialization and game over messages that are not shown) so you can get a sense of the kind of communication

The robber is simple: it accepts a world and produces a move message, ad infinitum.

The cop machine follows the protocol discussed earlier: it gets private info and then sends back what it wishes to share. This is then sent to all of the cops, and then each cop responds with a plan. The plans are shared and the cops vote. Finally the cops move, but with no obligations to follow the winning plans.

BDK

We supplied a BDK (bot development kit, natch)

- We wrote a rules game manager
- We wrote a GUI cop and robber
- We wrote record/replay transcript tools
- We wrote simple bots

We did a little bit of red-herring seeding in the original version. For example
during the startup of the bots, we
supplied the entire map in the first
message, rather than just leaving it in
the spec, even though we never
planned to change the map. Judging
from contestant comments, we fooled a

few.

The twist

The twist

Cops can choose to team up with the robber

- A cop offers itself to the robber, robber accepts

The twist was that cops can now voluteer themselves to team up with
the robber. the robber.
The robber must agree in order for a cop to become officially dirty.

Once dirty, the cop has thrown its lot with the robber. It loses if the robber
loses and if the robber wins, it gets a share of the loot.
\Rightarrow dirty cop

- A dirty cop wins if the robber wins and loses if the clean cops win

Smell lie

Smell lie

Bad smell lie

But, cops can also lie poorly. For
example, if the cop to the bottom right says that it smells the robber one away from itself, we know that it is lying an we can then infer that it is dirty and accuse it.

Twist gameplay changes

- Robber now communicates with dirty cops

To fully support the notion of dirty cops, we must allow the robber to

- Clean cops can accuse and take over dirty bots
- Minor change to map (removed degenerate strategy)

Desiderata revisited

Desiderata, ii

3.6×10^{13} different boards (just counting players positions)

games can be 100 moves, expect 5000 possible moves on average
barring clever search space collapses:

- two move lookahead: 122 gigabytes
- three move lookahead: $1 / 2$ petabyte

These numbers were calculated under optimistic assumptions. For example, the search space for the board only counts boards that have the sa

Typically, you expect to have an eve Typically, you expect to have an even
mixture of car cops and foot cops to be able to move around the board ablectively, which means that there are,
effect effectively, which means that there ar
on average, slightly less than 5,000 on average, slightly less than 5,000
moves from a given board, which is moves from a given board, whic
what was used to compute the what was used to compute the
numbers you see there. The wors case, tho, is more than 16,000 moves which, of course, bumps up those numbers. And, I'm assuming only 47 bits per board which would probably be difficult to achieve.

In any case, it seems quite difficult to use search effectively with this game.

Desiderata, iii

- Too many credulous cops \Rightarrow dirty cops win
- Too many dirty cops \Rightarrow accusations win
- Too many accusations \Rightarrow sneaky cops win
- Too many sneaky cops \Rightarrow robber wins
- Five credulous cops catch the robber

More work than I had guessed ...

Don't do this before you have a stable job
$>30 \mathrm{k}$ lines of code written
$>2,400$ pages of code read
>5.5 months of cpu-time
>6 robby-months (full time)

The teams

161 teams, 370 contestants

Initial submission
20 minutes per vertical bar
6 hours per green region

The results

The dots here correspond to teams. Each team gets its own dot. The color of the dot indicates which programming language the team used. We will see series of these slides where the dots will turn grey when the corresponding leam drops whe the according to the tournament phases:

The right-hand column shows which colors match which teams. I cut off languages with 5 and a fewer entries and combined them into the last color. The numbers are the absolute counts of teams and will remain the same for each slide. the percentages show the number remaining at each stage of the tournament and will change during the progression.

Already on the first slide there are three leams that have dropped out here, at the bottom. those are teams that only submitted to the twist. I allowed this, since it didn't make sense to disallow it -- teams can (and did) submit entries that were bogus, just to reserve a slot for the second phase.

The second phase shows all of the teams that did not fail in the regular season. You see some half circles there -- teams were allowed to submit either one or two sets of players. Half circle means that the team submitted two entries and one has dropped out by this point.

The third phase shows teams that beat the judges cops in the regular season and the fourth is teams that did not fall in the playoffs.
Next, we can see the same four slides for the twist: initial submission, those teams that did not fail in the regula season, those that beat the judges cops, and finally those that did not fail in the twist.

Performance in stages

As I studied these numbers, there were two other things I saw, and I think they show up particularly well here. These graph summarize the previous slides submissions, then failures, losing, and submissions, then failures, losing, and
more failures. and top to bottom are more failures. and top to bottoms colored by programming languages

The clear fact that stands out here is that Haskell is the language of choice for the programming contest. Haskell stands out a little bit in the first round, but it clearly stands out in the twist. So, kudos to the Haskell community for both producing a language that lets people build re-usable code and instilling this as a value in their community!

One other interesting fact here -- look at how C behaves in the twist (you can also see that a little bit in the
pre-twist). Its curve is not really the same as the other keys. It stays higher longer and then suddenly drops. What this means is that there are more failures late. Although there were only 5 C teams in the twist so it it seems hard to generalize, but this matche my experience generally harder to find and so come out late.

Desiderata, i (one last time)

Twist playoffs

- 13 entries participating (3 disqualified late)
- 349 randomly selected pods
- Average pod place determines overall winner

Lets return to the first desiderata, in particular the hope that taking advantage of the twist actually had an impact on performance in the second round.
By the time we got to the final playoffs, there were only 13 entries left. We ran there were only 13 entries left. We ran
350 pods, randomly selected, but lost 350 pods, randomly selected, but lost
one logfile. And recall, the winner was decided by the average place in the pod.

Overall, there were few people who used the twist. And by using the twist don't mean a clever use at all -merely scanned the output logs for the robber message that indicates it is looking for dirty cops and for the co message that indicates the cop is willing to become dirty or make an accustion.

Of the 12564 times a player played,

- 2640 tried to use the twist,
- 9924 didn't

The winners

Board game

How good a liar are you? How far can you trust your buddies?

Judges' Prize

The judges' prize goes to Dylan Hackers

Andreas Book and Manes Mehnert are here to accept the award on behalf of Dylan Hackers

Third Prize

The third prize goes to Combat-Tanteidan

Haskell is not tor shabby.

Sadly, Takayuki Muranushi and Hideyuki
Tanaka could not make it

Second Prize

The second prize goes to Dylan Hackers

Andreas Book and Manes Mehnert are here to accept the prize on behalf of Dylan Hackers

First Prize

The first prize goes to KiebererAndXiaoTou

Wolfgang Thaller is here to accept the prize on behalf of the KiebererAndXiaoTou

Thanks

The contestants
Eli Barzilay，Matthias Blume，Jay McCarthy， Maurice Codik，Matthias Felleisen，Matthew Flatt， Jacob Matthews，Scott Owens，David Press， Mike Rainey，John Reppy，John Riehl，Jono Spiro，Dave Tucker，Adam Wick，and 黃馨慧

